

1. Consider the following algorithm to generate a sequence of numbers. Start with an integer *n*. If n is even, divide by 2. If *n* is odd, multiply by 3 and add 1. Repeat this process with the new value of *n*, terminating when $n = 1$. For example, the following sequence of numbers will be generated for $n = 22$:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured (but not yet proven) that this algorithm will terminate at $n = 1$ for every integer n. Still, the conjecture holds for all integers up to at least 1*,* 000*,* 000. For an input *n*, the cycle-length of *n* is the number of numbers generated up to and including the 1. In the example above, the cycle length of 22 is 16. Given any two numbers i and j , you are to determine the maximum cycle length over all numbers between *i* and *j*, including both endpoints.

Input

The input will consist of a series of pairs of integers *i* and *j*, one pair of integers per line. All integers will be less than 1*,* 000*,* 000 and greater than 0.

Output

For each pair of input integers *i* and *j*, output *i*, *j* in the same order in which they appeared in the input and then the maximum cycle length for integers between and including *i* and *j*. These three numbers should be separated by one space, with all three numbers on one line and with one line of output for each line of input.

2. A sequence of *n >* 0 integers is called a jolly jumper if the absolute values of the differences between successive elements take on all possible values 1 through $n-1$. For instance,

1 4 2 3

is a jolly jumper, because the absolute differences are 3, 2, and 1, respectively. The definition implies that any sequence of a single integer is a jolly jumper.Write a program to determine whether each of a number of sequences is a jolly jumper.

Input

Each line of input contains an integer $n < 3,000$ followed by n integers representing the sequence.

Output

For each line of input generate a line of output saying "Jolly" or "Not jolly".

3. Recall the definition of the Fibonacci numbers:

$$
f_1 := 1
$$

\n
$$
f_2 := 2
$$

\n
$$
f_n := f_{n-1} + f_{n-2} \quad (n \ge 3)
$$

Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b].

Input

The input contains several test cases. Each test case consists of two non-negative integer numbers *a* and *b*. Input is terminated by $a = b = 0$. Otherwise, $a \le b \le 10^{100}$. The numbers *a* and *b* are given with no superfluous leading zeros.

Output

For each test case output on a single line the number of Fibonacci numbers f_i with $a \le f_i \le b$.

4. From Euclid, it is known that for any positive integers *A* and *B* there exist such integers *X* and *Y* that $AX + BY = D$, where *D* is the greatest common divisor of *A* and *B*. The problem is to find the corresponding *X*, *Y* , and *D* for a given *A* and *B*.

Input

The input will consist of a set of lines with the integer numbers *A* and *B*, separated with space $(A, B < 1,000,000,001).$

Output

For each input line the output line should consist of three integers *X*, *Y* , and *D*, separated with space. If there are several such *X* and *Y*, you should output that pair for which $X \leq Y$ and $|X| + |Y|$ is minimal.

5. Given any integer $0 \le n \le 10,000$ not divisible by 2 or 5, some multiple of *n* is a number which in decimal notation is a sequence of 1's. How many digits are in the smallest such multiple of *n*?

Input

A file of integers at one integer per line.

Output

Each output line gives the smallest integer $x > 0$ such that $p = \sum_{i=0}^{x} 1 \times 10^i$, where *a* is the corresponding input integer, $p = a \times b$, and *b* is an integer greater than zero.

6. Solomon Golomb's self-describing sequence $\lt f(1), f(2), f(3), \cdots >$ is the only nondecreasing sequence of positive integers with the property that it contains exactly $f(k)$ occurrences of k for each *k*. A few moment's thought reveals that the sequence must begin as follows:

> *n* 1 2 3 4 5 6 7 8 9 10 11 12 *f*(*n*) 1 2 2 3 3 4 4 4 5 5 5 6

In this problem you are expected to write a program that calculates the value of $f(n)$ given the value of *n*.

Input

The input may contain multiple test cases. Each test case occupies a separate line and contains an integer n ($1 \leq n \leq 2,000,000,000$). The input terminates with a test case containing a value 0 for *n* and this case must not be processed.

Output

For each test case in the input, output the value of $f(n)$ on a separate line.

7. Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with $p = 1$, does his multiplication, then Ollie multiplies the number, then Stan, and so on. Before a game starts, they draw an integer $1 \lt n \lt \ell$ 4, 294, 967, 295 and the winner is whoever reaches $p \leq n$ first.

Input

Each input line contains a single integer *n*.

Output

For each line of input, output one line-either

Stan wins.

or

Ollie wins.

assuming that both of them play perfectly.

Sample Input Sample Output

162 Stan wins.

17 Ollie wins. 34012226 Stan wins.

8. A company offers personal computers for sale in N towns $(3 \le N \le 35)$, denoted by $1, 2, \dots, N$. There are direct routes connecting *M* pairs among these towns. The company decides to build servicing stations to ensure that for any town *X*, there will be a station located either in *X* or in some immediately neighboring town of *X*. Write a program to find the minimum number of stations the company has to build.

Input

The input consists of multiple problem descriptions. Every description starts with number of towns *N* and number of town-pairs *M*, separated by a space. Each of the next M lines contains a pair of integers representing connected towns, at one pair per line with each pair separated by a space. The input ends with $N = 0$ and $M = 0$.

Output

For each input case, print a line reporting the minimum number of servicing stations needed.

Sample Output

2

9. A subsequence of a given sequence *S* consists of *S* with zero or more elements deleted. Formally, a sequence $Z = z_1 z_2 \cdots z_k$ is a subsequence of $X = x_1 x_2 \cdots x_m$ if there exists a strictly increasing sequence $\langle i_1, i_2, \dots, i_k \rangle$ of indices of *X* such that for all $j = 1, 2, \dots, k$, we have $x_{ij} = z_j$. For example, $Z = bcdb$ is a subsequence of $X = abcbdab$ with corresponding index sequence $\langle 2, 3, 5, 7 \rangle$. Your job is to write a program that counts the number of occurrences of *Z* in *X* as a subsequence such that each has a distinct index sequence.

Input

The first line of the input contains an integer *N* indicating the number of test cases to follow. The first line of each test case contains a string *X*, composed entirely of lowercase alphabetic characters and having length no greater than 10,000. The second line contains another string *Z* having length no greater than 100 and also composed of only lowercase alphabetic characters. Be assured that neither *Z* nor any prefix or suffix of *Z* will have more than 10100 distinct occurrences in *X* as a subsequence.

Output For each test case, output the number of distinct occurrences of *Z* in *X* as a subsequence. Output for each input set must be on a separate line.

> Sample Input 2 babgbag bag rabbbit rabbit Sample Output 5 3

10. Any set of n integers form $n(n-1)/2$ sums by adding every possible pair. Your task is to find the *n* integers given the set of sums.

Input

Each line of input contains *n* followed by $n(n-1)/2$ integer numbers separated by a space, where $2 < n < 10$.

Output

For each line of input, output one line containing n integers in non-descending order such that the input numbers are pairwise sums of the *n* numbers. If there is more than one solution, any one will do. If there is no solution, print "Impossible". . .

